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The contemplated Army missions for Ground Effect Machines require that

the ground clearances be greater and the overall machine dimensions be
smaller, leading to a higher value of h/d ratio than has usually been
investigated for air cushion concepts. Since the annular jet and plenum
chamber configurations normally become unstable at h/d ratios above 0.05

to 0.1, this investigation was undertaken to determine the static stability
of a generalized annular jet in hovering and forward flight and to evaluate
various modifications which would improve the stability. In addition to
stability, data were generated on control forces and performance.
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be achieved in the GEM at the operating heights believed to be necessary
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LIST OF SYMBOLS
Symbol Description
b Characteristic model length (base + jets)
Cm Pitching moment coefficient = M/L-b
o]} Rolling moment coefficient = 1/L. w
C.P. Center of pressure in % b or w
C.G. Center of gravity (moment center in % b or w)
d Effective diameter = //4s/T
G Ground effect power factor (see Page 81 )
h Height (base to ground)
HP Jet horsepower = P/550 HP
1 Jet peripheral length (on jet centerline) ft
| 1 Rolling moment ft 1b
L Lift force (perpendicular to ground) lbs
M Pitching moment ft 1b
Pb Static pressure under base lbs/ft2
Pj Static pressure in jet lbslft2
ptj Total pressure in jet lbs/f\t-2
P Jet power = Q.Etj , ft 1bs/sec o
| Q Jet flow quantity = _{o V;tdl ft3/sec
qj Jet dynamic pressure = 4 ij lbs/ft2




LIST OF SYMBOL.S, continued...

Description Units
Reference area (base + jet) ft2
Base area ft2
Jet area £t2
Jet thickness (perpendicular to jet) ft
Jet velocity = W ft/sec
Characteristic width (base + jet) ft

SIGN CONVENTION

Positive if in direction of initial rotation.
Negative if in opposition to initial rotation.

Same as above.

Positive up.




SUMMARY

Hovering static stability and performance experiments have

be2n conducted with a series of three-dimensional annular jet
models. The model planforms measured 40 by 20 inches and
incorporated one-inch thick jets operated at a total pressure of
41.5 pounds per square foot. Height-length ratios of 0. 05 to 0.20
were investigated.

Simple vertical and 45° inclined peripheral jets demonstrated
static longitudinal stability at low heights and instability at high
heights. The crossover point was h/b = 0. 075 for the vertical
jet and h/b = 0.107 for the 45° inclined jet. Static lateral insta-
bility existed for both models at all heights.

Convex and concave base shaping with a depth equal to 5% of the
model length did not appreciably affect stability in either pitch or
roll.

A rigid skirt together with rigid base segmenting flaps of length
equal to 5% of the model length were effective in augmenting longi-
tudinal and lateral stability when they extended two-thirds the way
to the ground, but were not very effective when they extended only
half way to the ground. The order of increasing effectiveness of
segmenting flap configuration was, concentric, corner lobe, and
centerline.

The concentric, corner lobe, and centerline jet segmented configu-
rations were all statically stable in pitch at all heights including
20% of the length. The order given is in order of increasing
stability. In roll, the first two configurations were stable at
heights up to 20% of the model width, while the centerline jet seg-
mented model was stable at all heights including 40% of the width.

All comments on stability apply to tilt angles equal to or less than
one-third of the touchdown angle. At angles approaching touchdown
even the centerline jet segmented model becomes unstable.




The configurations ihvestigated were not optimized for hovering
performance. The configurations are, however, representative

of compromises which occur due to forward flight considerations.
For these cases, the penalty in hovering performance due to jet
segmentation was only 8% at height/length = 0. 10 and only 4% at
height/length = 0.20 for the corner lobe and centerline jet configu-
rations. The concentric jet configuration actually had an imptove-
ment of 8% and 11.5% respectively at the same heights.




INTRODUCTION

Contract DA 44-177-TC-709 undertaken by Aeronutronic for

U. S. Army Transportation Research Command called for study

of stability and control of air-cushion vehicles for overland use.
The scope of the study was restricted to static stability and
control investigation, and emphasized the realm of height-diameter
ratios near and beyond 0. 10.

The work was divided into three phases. Phase I consisted of

ohovering studies and experiments. Phase Il covered the design
and preparation of a wind tunnel model and program based on the
information generated in Phase 1. Phase III consisted of Test and
Analysis of the wind tunnel model.

The results of Phase I are reported herein. This report is confined
to stability data as outlined in the proposal (Reference 2). Extensive
control investigations were conducted on the hovering rig in the
same time period as part of an Aeronutronic funded program, and
will be reported separately as a portion of Contract DA 44-177-TC-
745.

Information from Phase 11 was forwarded on June 27, 1961 (Ref-
erence 3) in the form of a pre-test memorandum. The final report.
covering Phase IIl is submitted as Aeronutronic Publication No. U-1447
(Reference 4), together with the subject report.




TEST FACILITY

The general arrangement of the Aeronutronic hovering test
facility is illustrated by the photograph presented as Figure 1.
Flow was supplied by a Chicago Airfoil Centrifugal Blower
driven by a 30-HP, 3-phase electric motor through belts and
pulleys. This unit was maunted at the top of an 11 -foot tower.
Figure 2 presents an envelope of maximum pressure and flow
combinations available from the unit. Lines of actual flow versus
supply pressure are also presented for the five different jet con-
figuration models. The experiments were conducted at a constant
jet total pressure level of 41. 5 pounds per square foot.

An 8-foot by 8-foot ground board was supported on a central
jack post which permitted height adjustment. The board was
mounted to the jack with trunions which permitted rotation of the
ground plane in pitch or roll. The ground board was locked into
position by posts at four corners which were C clamped to the
tower as shown in Figure 1.
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MODEL AND INSTRUMENTATION DESCRIPTION

All models in these experiments were bolted rigidly to the bottom

of the long vertical duct. All force data was obtained through
integration of pressure distributions picked up from the model

base and j=ts. Various models are depicted in the photegraph
included as Figure 3. The central model presents a base view

of the 45° model and includes the outer nozzle wall as well as

the base. The remaining models in the photograph present a top
view of several base inserts which fit concentrically within the outer
nozzle wall of the basic vertical jet model. Three examples of jet
segmentation are included together with a basic unsegmented base.

Figureg 4 through 10 provide geometric description and instru-
mentation locations for the following models:

Vertical Peripheral Jet Centerline Jet Segmented
45° Inclined Peripheral Jet Corner Lobe Jet Segmented
Shaped Base Concentric Jet Segmented

Skirted and Flap Segmented

The static pickups indicated by O on the above drawings consisted
of .065" O.D, .012" wall stainless steel tube mounted at right
angles to and flush with the surface. The total head tubes indicated
by X on the above drawings were made from the same tubing and
mounted in the center of the jet. The mouth was located one-half
inch above the bend in the tube. All tubes were gathered together
in one spot just under the base top, routed vertically up the duct
through a hollow tube, and then horizontally out of the duct through
a hollow streamlined strut. The pressures were conducted by
plastic tubing to the 50-tube water manometer shown in the back-
ground of Figure 1 and photographically recorded.

(Ko,




DATA REDUCTION PROCEDURES

Each base static pressure tap was assumed to have an area of
influence and to be located at the centroid of that area of influence.
The base lift was obtained by summing the pressure-area products.
The arms from the pressure tap to the pitch axis and roll axis were
recorded. The net moments were obtained by summing the pressure-
area-arm products.

Each instrumented jet location had an inner wall static tap, an
outer wall static tap, and a mid jet total head tube. The two wall
tap values were averaged to get the effective static pressure p; -
this was subtracted from the total head pt; to get the local dynamic
pressure qj. The local reaction pressure was computed = Pj + 2q
The jet lift was obtained by summing the reaction pressure-area
products. The lift of the 45° jet which was summated along the jet
was multiplied by . 707 to get the component perpendicular to the
base. The jet moment contributions were obtained by summing the
reaction pressure-area-arm products. The arms were measured
as the perpendicular distance between the jet centerline and the
centroid of the model planform in the plane of the base.

The total lift was found by multiplying the sum of the base 1ift, and
the jet component perpendicular to the base by the cosine of the tilt
angle. This is wind axis or lift perpendicular to the ground.

The jet velocity in ft/sec was obtained from the dynamic pressure
at each jet instrumented location. The volume flow in ft3/sec was
found by summing the velocity-jet area products. The exit jet
power in ft lb/sec was found by integrating the praducts of jet
velocity, jet area, and total pressure.

The final results of the machine integrations were in'the following
form:

C Base Moment + Jet Moment/(total lift) (Model length)
Mtotal

Cm Base - Base Moment/(total lift) (Model length)

/1




CMm = Jet Momaent/(total 1ift) (Model length)

Jet

Also the three roll coefficients non-dimensionalized with model
width.

Also
Total 1lift in pounds.
Total voluma flow in £t3/soc.
Total jet power in HP.

/2




Figure 1

Hovering Test Facility ((Photograph 10520)
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Figure 2
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Figure 3
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Three-Dimensional Model Bases (Photograph 10217)
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45° INCLINED PERIPHERAL JET MODEL

o STATIC HEAD 1.0Gr

x TOTAL® HEAD
3.04n R et

T 2.0in R

; ?\\ ! f%/

O

R

”\ J
Q o (e} o o o
(o] (o] (=] o] o] (o] AOir‘
Qo o] [o] o o] o]
y - + — %4 24
i o] (] o
|
—=C 14 >
o o] [e]

(.

(et 20 i{n - “’"‘3.0 i'

|17




Flé 6
SHAPED BASE  MODELS
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SKIRTED AND FLAP SEGMENTED MODELS
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CENTERLINE JET SEGMENTED MODEL
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CORNER LOBE JET SEGMENTED MODEL .
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EXPERIMENTAL RESULTS

1. Longitudinal Stability

Simple Peripheral Jet Models

The base plus jet center of pressure shift of the vertical
peripheral jet model is presented in Figure 11. The
small angle slopes indicate static stability at h/b = , 05,
neutral stability at h/b = . 075 and instability at larger
values of h/b. At h/b = .05, the stability appears to
decrease slightly at large pitch angles. At intermediate
heights, the initial unstable slopes actually change to
stable slopes at high pitch angles. At h/b = .20, this
effect had not yet occurred at the highest angle tested.

Figure 12 reveals that the base contribution to static
stability becomes increasingly stable at high angles of
pitch at all heights except h/b = .20. Examination of
base pressure distribution indicates a softening of the
unstable pressure gradients at high angle compared to
moderate angles and a large local pressure increase near
the low end. The base contribution is seen to be a large
portion of the total and to a first approximation describe
the complete model stability.

The minor contribution of the jet is confirmed in Figure 13
at all heights except h/b = . 05. Here the jet contribution
becomes large at the touchdown angle. When added to

the base alone C. P. shift curve, the favorable trend in
slope at high angles is reversed. At moderate and high
heights, the jet contribution curves are systematic indi-
cating a slightly stable influence up to moderate pitch
angles {ollowed by a slightly unstable influence at larger
pitch angles. At angles very near touchdown {not covered
at the higher heights in these experiments) an appreciable
unstable jet contribution similar to that observed at

23




h/b = .05 would probably occur. The reason for this is

that the jet flow on the low end (and hence momentum

contribution to the reaction force) is severely reduced on

contact with the ground, whereas the jet on the high end

faces a minimum of back pressure, has a relatively

large momentum, and hence a relatively high reaction S
force.

The base plus jet center of pressure shift of the 45° -
inclined jet model is shown in Figure 14. Stable slopes
exist to higher values of h/b than for the vertical jet
model. Again, the base contribution to the stability is the
large one and the stability of the model is represented to
a first approximation by the base contribution. The
tendency for the base to become increasingly stable at

the higher pitch angles may be observed in Figure 15.

The jet contribution (Figure 16) is larger than it was

for the vertical jet model and varies from neutral at small
angles to unstable at larger pitch angles.

The static longitudinal stability derivative (for small
angles) 3 C)\4/9<X is shown in Figure 17 for the vertical
jet and for the 45° inclined jet models as a function of

the height in percent of length. The derivative is expressed
in percent center of pressure shift per degree of tilt to
obtain larger numbers than would occur if a pure decimal
system were used. A value of -.2 means that 5° of tilt
would result in a shift of the center of pressure 1% of

the length off the centerline toward the low side. The two
madels have identical values at h/b = . 05 and .20. The
45° jet model is clearly superior at all intermediate
height values. In particular, the 45° jet does not go
unstable until h/b exceeds . 107, whereas the vertical jet
becomes unstable at h/b = . 075.

The boundaries of pitch angle and height for stability are
compared for the two models by Figure 18. These simple
peripheral jet models are stable at all angles at the lower
heights but have the peculiar characteristic of regaining
stable slopes at high angles of pitch at those higher heights

24




where they are unstable for small pitch angles. This
tendency has been previously reported by the NASA
tests of annular jet models with length-width ratios
greater than one (Reference 5). The superiority of the
45° jet model at h/b = .13 and ©¢ = 10° is clearly
indicated.

Shaped Bases

Two-dimensional stability investigations conducted
previously at Aeronutronic suggested that proper shaping
of the base profile might (in the presence of cross flow)
produce a more stable base pressure distribution. Two
varaations were investigated utilizing the simple vertical
peripheral jet model. In the concave version the base
sloped to a central recessed point. In the Convex version
the base was recessed just inboard of the inner jet wall
and sloped back to a central point which lay in the plane
of the jet exit.

T — |

‘ CONCAVE ’

The magnitude of the recess was in each case 5% of the
model length or 10% of the width.

¥ Reference l
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The comparison of these configuration, base plus jet
center of pressure shifts with that of the flat base is
given in Figures 19 and 20. The convex base was stable
at h/b = .05 and neutral at h/b = . 075 similar to the

flat base. At h/b = .10 all three configurations were
very nearly alike. At h/b = .15 and .20 the convex was
least unstable, and the concave base was intermediate
between the convex base and the flat base. At these
heights all three configurations were unstable.

Both the concave and the convex base exhibited increasing
instability at the larger pitch angles in contrast to the

flat base which exhibited improved stability at the larger
pitch angles. These experiments,although very brief,

do not hold out much hope for base shaping as a2 method
of obtaining hovering static stability.

Skirted and Flap Segmented Models

Aeronutronic is actively studying the flexible skirt concept
as a means of reducing required flow quantities and power
requirements, If this should prove practical, it will be

of interest to know what influence the skirt will have on

the stability problem. If a long flexibie peripheral flap

is practical, it should also be possible to segment the

base with long fiexible flaps. These could perhaps replace
base segmenting jets as a means of improving hovering
stability.

A rigid skirt of length = 5% of the model length was added
to the model as an extension of the outer nozzle wall. In
addition, the base was segmented by various rigid flaps.
All stability runs were conducted at height (measured to
the model base) of either 7. 5% or 10% of the model length.
The clearance beneath the skirt is therefore either 2. 5%
or 5%.. The skirt reaches either two-thirds or one half
the way to the ground.

The base plus jet center of pressure shift is cormpared for

several configurations in Figure 21. The addition of the
skirt alone did not markedly improve the static stability.
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The concentric flap changed the neutral stability at

h/b = .075 to slightly stable, but was not adequate to
provide stability at h/b = .10. The corner lobe and
centerline base segmenting flaps provided static sta-
bility at h/b = .075 and .10. The centerline flaps were
superior to the other types. The magnitude of the C. P,
shift was small because the long skirt limited the pitch
angles to modest values. The jet contribution is small
and the base contribution describes to a first approxi-
mation the stability tiehavior of the model., In general
the stability improves at the higher pitch angles.

The stability derivative 3 C,,/9 ©¢ for small angles is
shown in Figure 22. The degree of static stability for

the skirted and flapped models is seen to decrease rapidly
with increasing height similar to the basic model. The
order of improvement in stability from the basic to the
concentric to the corner lobe to the centerline configu-
ration is clearly indicated. In general, the flap is very
effective when it extends two-thirds of the way to the
ground, and is losing effectiveness rapidly when it
extends only half way to the ground.

Jet Se gmented Models

Jet segmentation of the base is the accepted method of
augmenting the static hovering stability of annular jet
air-cushion vehicles {Reference 6). The most general
formulation of the problem would be, '""What is the geometry
of jet segmentation which will provide a given level of
static stability at high values of h/b while retaining the
highest possible performance'', Several problems are
immediately apparent. It is not clear what level of
stability is desirable. If a level is arbitrarily decided
upon, one must still define what 18 meant by performance.
Air-cushion vehicles (for a variety of reasons) do not
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employ peripheral jets which are optimized for hovering
performance. The percent change in performance due

to segmenting jets will vary depending on how close or
far one is from optimum hovering geometry. It is not
possible at present to compute the amount of jet segmen-
tation required to provide a given level of stability. The
lift and power of a jet segmented configuration is likewise
not accurately predictable.

In view of the above dilemma, a simple experimental
program was employed to gain some working experience
with the problem and to provide inputs for follow-on
analytical work which might eventually provide a general
solution.

The basic 40" by 20'' rectangular vertical peripheral jet
was used as the reference model. The base was replaced
with centerline, corner lobe, and concentric, segmenting
jet bases in succession. All models had one-inch wide
peripheral and segmenting jets and the total pressure in
the jet was set at 41. 5 pounds per square foot,

The base plus jet center of pressure shift is given in
Figure 23 for the centeriine jet segmented model. The
stability for small angles is high at low and moderate
heights and becomes lower at the higher heights. Insta-
bility occurs at large angles. This change from stable

for small angles to unstable at large anjles is the reverse
of the situation for the basic model at high heights where
the model had an unstable slope at low angles and became
stable at high angles. It should be noted that the center-
line jet segmented model is stable in pitch (at small angles)
at all heights tested including 20% of the model length.

The base center of pressure shift curves given in Figure 24
are very similar to the total C. P. curves except that the
decrease in stability at large angles is less pronounced.
The jet contribution given in Figure 25 shows little effect
up to moderate angles but a significant de-stabilizing
tendency at high angles.
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The base plus jet center of pressure shift is given for
the corner lobe jet segmented model in Figure 26.

The nature of the curves are very similar to those of
the centerline jet segmented model but the stability is
not as high. Instability again appears at high tilt angles
at high heights. The base contribution {(Figure 27) and
jet contribution (Figure 28) tell a very similar story to
the centerline jet segmented model.

The base plus jet center of pressure shift is given for

the concentric jet segmented model in Figure 29. The
model is stable at all heights although the degree of
stability is lower than demonstrated by the two previous
jet segmented models. The concentric jet goes unstable
at the highest height angle combination. The base contri-
bution is shown by Figure 30 to be the stabilizing term
and the jet contribution of Figure 31 exhibits a large
unstable contribution at large h and & .

The small angle stability data for the jet segmented models
is summarized in Figure 32. All three configurations are
stable at all heights tested through 20% of the model
length. The concentric jet had the lowest stability, the
corner lobe configuration had somewhat higher stability,
and the centerline jet configuration had the highest
stability.

The effect of jet segmentation on height-pitch angle sta-
bility boundaries is illustrated by Figure 33. High tilt
angle instability is encountered on the centerline jet

model at h/d > .08, on the corner lobe model at h/d>. 12,
and on the concentric jet model at h/d > .16. Thus, we
see that order of preference on high tilt angle stability

is just the reverse of the order of preference on the
magnitude of the low tilt angle stability.
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Figure 12
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Figure 17
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Figure 18
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o

st

4
CI3ABJ v HILId 30 379NV

of

3AYONOD

HLINIT % ~ 14IHS d°)

AV74

HAONIT Z0Z = 1H913H

oz

[

ol

7

$33¥930 ~ HUIJ 30 I1INY

4

o \

S~

[3AVINOD

LV1d

g

HINIT Y51 = LHH3H

13IHG 33nSS339d 30 FJIINT)

I3[ Snig 3svg NO ONIdVHG 35vg 40 103447

HIINIT % ~ LIIHS oD

39




C.R SHIFT ~ZLENGCTH

Figure 21

EFFECT  OF SKIRT AND FLAPS

oN BASE Pus JET

CENTER OF [RESSURE SHIFT
h
; ?'.075
a(.
5 10

ANGLE OF

NOTE :
SKIRT £ FLAPS
57 OF LENGTH

pircH~oes, © | NO SKIRT

ANGLE OF PiTCH ~ DEG.

J0




-3
2
B
-l
Wik
I
QU
qE
v/
Q -1
P
N
o
" T
83 -2
R
<
§8
w% -3
e
€
SHR
l4s]
\_3 e |
-5
-6

EFFECT OF 5% LENGTH SKiRT AND flaps  Fievre 22
ON S7aric LONGITUDINAL HOVERING STABILITY
N
\\ NO SKIRT
N PERIPHERAL
JET
UNSTABLE ﬁ
5 1o - ] 20 5
STABLE HEIGHT ~';é OF LENGTH | g

/
N

|
|

I
;-—-T———T—r—w

o .

==

N SKIRT + CONCENTRIC SEGMENTING FLAP

N SKIRT + CORNER L0BE SEGMENTING FLAPS

SEGMENT

"\ SKIRT + LONGITUDINAL § LATERAL
ING FLAPS

&/




Figure 23
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Figure 33
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2. Lateral Stability

a. Simple Peripheral Jet Models

The base plus jet center of pressure shift of the vertical
peripheral jet model is shown in Figure 34. This configu-
ration is unstable in roll at amall angles at all heights and
tends to become more unstable at large tilt angles. The
model was unstable in roll at heights where it was stable

in pitch. Since the model width is only half the model
length, the minimum physical height point was halved

in order to amount to the same percentage of characteristic
length as in the pitch case. This height = 5% w = 2, 5% b still
produced an unstable slope. It would appear that long
narrow models have near two-dimensional flow patterns in
roll. Aeronutronic experiments (Reference 1) indicated
instability at all heights and angles for two-dimensional
flow.

The base center of pressure shift of Figure 35 is very
similar to the base + jet curves. There is, however, a
decrease of base instability at large tilt angles and low
hefghts. The jet contribution is small for all cases except
at tilt angles near touchdown at low heights as shown in
Figure 36.

The base + jet center of pressure shift of the 45° inclined
peripheral jet model as shown in Figure 37 is either
unstable or neutrally stable over the entire height range.
The degree of instability at both small and large tilt
angles is less for the 45° inclined jet than for the vertical
jet.

The base center of pressure shift as given in Figure 38

is very similar to the base + jet shift. The jet contribution
is small but becomes increasingly unstable as tilt angles
approach touchdown as shown in Figure 39.

The small angle lateral stability of the vertical and 45°
inclined jet are compared in Figure 40. The 45° inclined
jet is less unstable at low to moderate heights. There is
little difference at the larger height.
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Effect of Base Shaping

The effect of shaping the base (in an effort to change the
base pressure distribution under crossflow condition)
was almost negligible as shown in Figure 41 and 42.

Skirtédd and Flap Segmented Models

The addition of a peripheral skirt alone did not change
the instability in roll of the basic model to any extent
as shown in Figure 43. The concentric flap was also
not very helpful. The corner lobe flaps were somewhat
more effective but still did not stabilize the model at
either height. (15% and 20% of the width.) The single
and double longitudinally running flaps stabilized the
model at the lower height where they extended two-thirds
of the way to the ground but failed to provide stability
at the 20% height where they extended only half way to
the ground.

The small angle stability slopes are compared for the
various flap arrangements in Figure 44. .In order of
increasing improvement they are: concentric, corner
lobe, single longitudinal, and double longitudinal. As
mentioned before, the basic model instability in the lateral
mode is more severe than in the longitudinal mode. It
also appears to be more difficult to rectify the situation
with segmenting flaps.

Jet Segmented Models

The base + jet center of pressure shift of the centerline
jet segmented model is shown in Figure 45. Good small
angle stability is available at all heights and holds up to
12 degrees of tilt angle. The model becomes unstable at
large tilt angles at virtually all heights.
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The*base center of.pressure shift shawn in Figure 46
appears similar to the base + jet curves but retains a
stable slope to higher angle-height combinations. The
jet contribution is seen in Figure 47 to be responsible
for the high angle instability of the base + jet.

The base + jet center of pressure shift of the corner lobe
jet segmented model is shown in Figure 48. Small
angle stability exists to a height of 20% of the width with
instability occurring at higher heights. High angle in-
stability is present at all height values. The base center
of pressure shift curves presented in Figure 49 exhibit
the same trends but have a lower degree of high angle
instability. Figure 50 demonstrates the unstable contri-
bution from the jets at tilt angles approaching touchdown,

The base + jet center of pressure shift of the concentric
jet segmented model is shown by Figure 51 to exhibit
almost neutral stability at all heights. The base contri-
bution of Figure 52 is moderately stable at all heights and
practically throughout the range of tilt angles. There is
of course the usual decrease in magnitude of base sta-
bility contribution with increasing height. The jet
contributions of Figure 53 are more unstable than for other
configurations, even at small angles where neutral or
slightly positive stability has been the rule. This effect
was also present for the concentric jet in pitch. This
could be expected since the two branches of the concentric
arrangement will magnify the momentum choking on the
low side.

The small angle stability of the jet segmented models is
compared in Figure 54. The concentric model is slightly
stable below 20% h/w and neutrally stable above this
height, The corner lobe model is somewhat more stable
below this crossover and slightly unstable at higher
heights. The centerline jet segmented model is stable

at all heights up through the maximum tested height of
40% of the width!
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The height-roll angle stability boundaries are compared
in Figure 55. The concentric and corner lobe boundaries
are very similar and the centerline jet segmented model
shows a clear superiority. It should be emphasized that
even the centerline jet segmented model is unstable at
very large tilt angles.
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Figure 40
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Figure 43
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Figure 44
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Figure 46
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Figure 49
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Figure 50
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Figure 52
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Figure 53
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Figure 54
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Figure 355
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3. Qualifications of the Stability Results

a. ,Response of the Flow Supply

It should be remembered that the results presented here
are for a near ideal flow impeller and internal aero-~
dynamic system. The Chicago Airfoil Centrifugal Fan
output was not affected by model tilt. The internal
aerodynamics were simple such that no unsymmetry in
total head occurred due to tilt. The average total head
on the low and high end of the models were within one-
half of 1% of each other throughout the range of pitch
and roll angles. This might not necessarily hold true
of an actual air-cushion vehicle with an axial flow im-
peller and internal aerodynamics which are compromised
because of space limitations.

.
b. Possible Contributions Not Measured in the Tests

The air loads which were integrated to provide the lift

and moments in this work consisted of the load normal

to the base and the reactions along the jets. Theoretical
and experimental work on plenum chambers by Hunt of
English Electric Company (Reference 7) has revealed a
chord force in the plane of the base which can be appreciab<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>